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Optimum size of a molecular bond cluster in adhesion
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The strength of a bonded interface is considered for the case in which bonding is the result of clusters of
discrete bonds distributed along the interface. Assumptions appropriate for the case of adhesion of biological
cells to an extracellular matrix are introduced as a basis for the discussion. It is observed that those individual
bonds nearest to the edges of a cluster are necessarily subjected to disproportionately large forces in transmit-
ting loads across the interface, in analogy with well-known behavior in elastic crack mechanics. Adopting
Bell’s model for the kinetics of bond response under force, a stochastic model leading to a dependence of
interface strength on cluster size is developed and analyzed. On the basis of this model, it is demonstrated that
there is an optimum cluster size for maximum strength. This size arises from the competition between the
nonuniform force distribution among bonds, which tends to promote smaller clusters, and stochastic response
allowing bond reformation, which tends to promote larger clusters. The model results have been confirmed by
means of direct Monte Carlo simulations. This analysis may be relevant to the observation that mature focal

adhesion zones in cell bonding are found to have a relatively uniform size.
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I. INTRODUCTION

Adhesion is the principal means by which a biological
cell is anchored to extracellular matrix. As such, it is an
essential prerequisite for certain biological functions—for
example, cell differentiation [1] or cell motility [2-5]. The
noncovalent bonds formed between ligand and receptor mol-
ecules on opposing surfaces are responsible for the formation
of adhesion regions which, when fully developed, are called
focal adhesion zones. A striking feature of focal adhesion
regions is that the maximum size they achieve, around 1 um
in diameter, is almost always the same despite their locations
[6,7]. In a living cell, these adhesion clusters are subjected to
disruptive forces due to, for example, shear flow in the fluid
surrounding the cell or the thermally induced relative motion
of the opposing surfaces. In order to function properly, the
adhesion clusters must possess a certain level of strength.

Motivated by these observations, we examine an idealized
model problem in which two soft elastic materials (repre-
senting a cell and the substrate, for example) are in adhesive
contact over a shared interface via clusters of discrete bonds.
The interface is required to transmit a certain level of force
per unit area on a scale that is large compared to cluster size.
Clusters are periodically distributed along the interface so as
to render the determination of load transmitted per cluster
specific. We address the question as to whether or not the
interface strength is dependent on the cluster size under these
circumstances and, if so, how to describe that dependence.
We only consider focal adhesions here where cells adhere to
the extracellular matrix through integrins that link intracellu-
larly to actin filaments. According to Alberts et al. [8], there
are three other main types of cell adhesions: namely, the
adherents junctions, desmosomes, and hemidesmosomes. In
principle, the analyses to be presented can be applied to any
of those situations with the parameters properly chosen to
represent the nature of specific type of adhesion being con-
sidered.
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The study of adhesive contact between elastic spheres, as
an extension of the classical contact theory of Hertz, has a
rich history extending back nearly four decades. Generally
speaking, if the spheres are very stiff, then the Derjaguin-
Muller-Toporov (DMT) model [9] is an appropriate choice
for formulating the problem. However, if the material is soft
(which is the case for most biological systems), then the
so-called Johnson-Kendall-Roberts (JKR) model [10] be-
comes applicable. With a view toward a common basis for
these limiting cases, Maugis [11] developed a general math-
ematical formulation of the problem, for which the behaviors
of the DMT and JKR models are preserved as special cases
under extreme conditions.

In the models mentioned, adhesion is represented as a
reduction of system free energy per unit area of interface,
say, v, as two opposing surfaces are joined. For cell adhe-
sion, however, this concept becomes somewhat obscure be-
cause it has been convincingly demonstrated ([12-14], for
example) that the enforced separation of a single ligand-
receptor bond is a stochastic process and, hence, the adhe-
sion energy in this case has meaning only from a statistical
average point of view.

The strength of an adhesion cluster which consists of nu-
merous ligand-receptor bonds was first considered by Bell
[15] who proposed a framework for incorporating force in a
description of bond separation. The dynamic behavior of
clusters subjected to pulling forces has been studied by Se-
ifert [16] and, recently, stochastic analyses of such systems
have been conducted by Erdmann and Schwarz [17,18]. In
the present study, we will show that there is an optimum
cluster size for which the interface strength is maximum. As
will be demonstrated below, this is a result of the interplay
between geometrical stress concentrations around the cluster
edges and the stochastic nature of ligand-receptor bonds.

II. MODEL FORMULATION

Consider two extended elastic solids with a shared inter-
face as being bonded together over a periodic array of adhe-
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FIG. 1. Macroscopic picture of two elastic bodies in adhesive
contact. The materials are connected through an array of adhesion
zones along the interface, each of width 2¢, with regular spacing
2d. Part (a) shows the joined elastic bodies being deformed by a
remotely applied tensile stress o-.. In part (b), one of these bodies is
isolated from the other so as to show schematically the nature of the
distribution of stress, a'yy(x,O), transmitted across an adhesion zone.

sion zones along the interface, as depicted in Fig. 1(a). To
extract the essential result to be illustrated here in the sim-
plest way, only the two-dimensional plane strain configura-
tion is considered. Furthermore, the two isotropic elastic ma-
terials are assumed to have the same modulus E and Poisson
ratio v. Each adhesion zone within the array has length 2¢
and the zone-to-zone period is 2d.

A uniform stress field Oyy=0s, acting in the direction nor-
mal to the interface and tending to separate two surfaces, is
applied remotely. Under these circumstances, the force (per
unit depth) transmitted by each ligament of width 2¢ is
2do... Consequently, the average stress transmitted across
each ligament is do../c. If the fraction p=c/d of the inter-
face that is bonded is fixed, then the mean stress transmitted
across a ligament is also fixed. Under these conditions, we
ask whether or not an optimum cluster size exists for which
the interface strength is maximum. To answer this question,
it is instructive to examine how load is transmitted through
each adhesion patch. We proceed by first assuming that the
bond itself is much stiffer than the elastic half-space, so the
deformation of the bonds themselves can be neglected. After
drawing some conclusions based on this situation, the pos-
sible influence of bond compliance is addressed below.

It has been assumed that the cell body can be treated as an
elastic continuum and that force is transferred to an adhesion
zone through this elastic continuum rather than being applied
directly. A living cell with a well-developed cytoskeleton
structure does indeed behave as an elastic body [19], and the
external constraint imposed by adhesion can conceivably re-
sult in a distribution of stress within the cell similar to that in
an elastic solid. Furthermore, there is a natural repulsion be-
tween a cell and the extracellular matrix during adhesion as a
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result of the glycocalyx. The repulsion in the regions be-
tween adhesion patches due to the glycocalyx is likely trans-
ferred to the adhesion zones through the cytoskeleton, as it
would be in an elastic solid. While the precise mechanism of
load transfer through a cell to its adhesion zones has not been
measured directly, we regard diffuse load transfer, typical of
elastic solids, to be among the possibilities for describing its
general nature.

The configuration illustrated in Fig. 1(a) has been studied
thoroughly in the context of elastic crack mechanics; see
[20,21], for example. In that case, opposite surfaces are con-
tinuously bonded within each adhesion region. The con-
straint of adhesion and the requirement of equilibrium result
in a tensile stress distribution within each adhering segment
of the interface with the largest stress at the edges (in fact,
square root singular at the edges in the ideal case) and with
relatively small stress in the interior of the patch. Such a
stress distribution is illustrated in Fig. 1(b). The strength of
the singularity is commonly represented by the so-called
elastic stress intensity factor, which, for the case of tension,
is usually denoted by K.

If the period of the distribution 2d is several times the
length of the patch 2c¢, then the distribution of stress trans-
mitted by adhesion is essentially

20..d 1
: (1)

7(x:0) me 1 -x%e
for the particular patch occupying the interval —c<x<<c.
This general form of the distribution of transmitted stress,
with relatively large stress at the edges and relatively small
stress in the interior of the zone, is the principal inference to
be drawn from elastic crack mechanics. The implication for
the case of discretely bonded adhesion zones, when the dis-
crete nature of the stress distribution within a patch is intro-
duced, is that the bonds near the edge of the patch will be
required to carry significantly more force than the bonds in
the interior of the patch. In particular, we require that the
patch transmit a total force of 2do., over a width of 2¢ be-
tween elastic bodies, but that the distribution of discrete
forces giving rise to this property be otherwise independent
of the existence of adjacent patches.

Figure 2 shows a microscopic view of a representative
adhesion cluster for the system in Fig. 1. The adhesion patch
consists of numerous receptor-ligand bonds. The width of
each bond is denoted by a and the bonds are assumed to be
uniformly distributed within the cluster with spacing b. No-
tice that this assumption is particularly appropriate for cases
in which the binding molecules on one surface have been
spatially fixed [22] or have very low diffusivity; otherwise,
the migration of bonds within the patch may become signifi-
cant.

We emphasize that the foregoing description of load
transfer across an adhesion patch with continuous bonding is
included here only to establish an expectation for the force
distribution among the bonds in the case of discrete bonding.
No results of elastic crack analysis are actually incorporated
in the model developed here, which we regard as being me-
chanically self-consistent.
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FIG. 2. Microscopic picture of one of the adhesion zones from
Fig. 1, showing schematic representations of individual receptor-
ligand bonds. The width of each molecule pair is denoted by a, and
the spacing of bonds along the interface is denoted by b. As was
indicated in Fig. 1, the overall width of the cluster is 2c.

III. MODEL ANALYSIS

Numerical methods were used to determine the precise
nature of the discrete force distribution among any number
of individual bonds. The calculation was based on the Fla-
mant solution of plane elasticity. This solution provides the
complete plane strain elastic field for the case of a concen-
trated normal force acting on the planar surface of an elastic
solid which is otherwise stress free [23]. With this solution in
hand, any distribution of stress applied in the direction nor-
mal to the surface can be constructed by means of superpo-
sition. In the present instance, we have clusters of n bonds
with each such cluster forming an adhesion zone. Each indi-
vidual bond has width a, and a uniform stress distribution
was imposed over this interval. The net force on the bond is
the resultant of the stress distributed over the interval of a.
The center-to-center distance between bonds is b. The mag-
nitude of the net force acting on each bond was determined
by enforcing the condition that the surface displacement in
the normal direction be uniform (the bond remains intact)
and the condition that the resultant force within the cluster be
equal to 2do... To evaluate the interface strength, we first
recognize that the integrity of each adhesion patch must be
maintained for the interface to retain its capability to transmit
force. Otherwise, the dissolution of one cluster would, in
turn, result in the elevation of stress levels on the neighbor-
ing adhesion cluster edges and would thereby induce total
separation of the interface.

An important aspect of the behavior of receptor-ligand
bonds is that their formation or separation is generally sto-
chastic in nature. This has been convincingly demonstrated
through experimental observations by [12—14], among oth-
ers. Consequently, by its nature, any bond will dissociate
eventually if one waits long enough. On the other hand, any
broken bond can reform if proximity is maintained. Follow-
ing Bell’s arguments concerning the influence of a force ap-
plied to a bond [15], the dissociation rate for bond separation
when a force is present is taken to be k, ;= koe!fo, where k is
a constant, f is the magnitude of the force tending to separate
the bond, and f,, is a constant that has the same physical
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FIG. 3. (Color online) Possible transitions and transition rates
between states.

dimensions as f (N/m in two dimensions). For simplicity, the
association rate for reestablishing a bond is assumed to have
the constant value k,,=1 per unit time. This constant value
implies that the time scale is set so that the reaction time for
forming a single bond is one time unit. If C,, is the magnitude
of energy reduction, normalized by thermal energy k7, upon
formation of a single bond with no force acting on it then,
from thermodynamics, k is related to C,, by ky=e~? per unit
time. Typically, the reduction in energy upon the formation
of a single bond is in the range between 5 and 25 KT [24];
hence, we estimate that k is in the range of 107#—1072 per
unit time.

Returning to the picture of an adhesion cluster, any bond
within the cluster can separate with a rate k,; and, con-
versely, any separated bond can reform with a rate k. If we
consider all possibilities, then the picture becomes chaotic
and analytically intractable. However, we can now take ad-
vantage of the observation from elastic crack mechanics:
namely, that the edge bond is subjected to the largest force
among all the bonds in the cluster. Consequently, it has the
highest probability of separation; recall that the dissociation
rate depends exponentially on the force. Also, consider the
fact that most bonds in the interior of the cluster support
relatively little force, so it is unlikely that the loads on these
innermost bonds will change dramatically even if some
among them are broken. Based on these observations, we
further simplify the analysis by assuming that the breaking or
reforming of bonds can occur only at the edges of the cluster.
As a result, the accessible states of the system are repre-
sented by a single variable n, the number of intact bonds
within the cluster. Hence, a potentially very complicated
problem is reduced to a single-step process [25]. As shown in
Fig. 3, if the system is in state n, then it can go to state n
—1 with a rate r(n) upon separation of one of the outermost
bonds; conversely, the system can return to state n from n
—1 with rate g(n—1) by reforming one of the outermost
bond.

Suppose that the maximum number of bonds which can
be formed within a particular cluster is N. Then the value of
n must lie in the range 0 <n=<N. Obviously n=0 represents
a completely separated interface. In the terminology of sto-
chastic processes, n=N is a reflecting boundary and n=0 is
an absorbing boundary of the system [26]. Because breaking
or reforming of bonds is allowed to occur only at the edges,
the transition rates r(n) can be calculated according to

021909-3



YUAN LIN AND L. B. FREUND

r(1) = kge™0,  r(n) = 2kge" ™0 for 1 <n<N, (2)

where F=2do, is the total transmitted force and F,(n) is the
force acting on either of the outermost bonds in the cluster.
The magnitude of this force is calculated numerically for any
state n. The factor of 2 appears in the expression for r(n)
because the two edges respond in the same way. Similarly,
the rates g(n) can be determined as

g(0)=g(N)=0, gIN-1)=1, g(n)=2
forl<n<N-1. (3)

Notice that, in writing (3), it has been assumed that both
adhesion edges can grow for any state n<<N—1. Since we are
dealing with a stochastic system with an absorbing boundary,
the cluster will eventually fail—that is, will eventually reach
the state n=0—given enough time. If the system is assumed
to be in state N initially, then the average lifetime of the
cluster can be calculated as [26]

N N
r=2 2 [rim;, 17, (4)

i=1 n=i

where 11, ; is defined as II;; ;=1 and Hi,j:gﬁ(%%%(% for

i=<j. In order to discuss the strength of a cluster, we first
need to choose a reference configuration where the
“strength” is set to be zero. Here we choose N=2 as the
reference configuration having negligible strength. This con-
figuration has an average lifetime of

1 3

=+ 5
2k 2k ®)

fy
when no force is acting on the cluster. For any other configu-
ration N>2, we define its strength, relative to the reference

configuration, as the critical load it can support such that its
average lifetime is equal to .

IV. RESULTS AND DISCUSSION

Choosing b/a=2.5, the normalized interface strength
2ba”}* ] f,C), is plotted as a function of cluster size N in Fig.
4 for different k, values. The most striking feature illustrated
in Fig. 4 is the presence of a local maximum representing an
optimum cluster size for which the interface strength is
maximum. We interpret this outcome as a competition be-
tween the crack mechanics aspects, which favor a smaller
cluster size in order to minimize the stress concentration on
the cluster edges, and stochastic considerations, which favor
larger clusters in order to maintain the robustness of system.
Also shown in Fig. 4 is that, as was anticipated, the normal-
ized interface strength as defined in the way discussed above
is insensitive to the particular value of k.

To test the validity of the model, Monte Carlo simulations
of the system were carried out. In these simulations, it was
assumed that any bond in the cluster, not only the outermost
bonds, can separate or reform at any instant. The simulation
results for ky=1073 are included in Fig. 5 and these are com-
pared with the predictions of the simple model. It is clear
that the model captures almost all the important features of
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FIG. 4. (Color online) Normalized interface strength

2ba*/ f,C), as a function of cluster size.

the behavior, such as the peak value in strength as well as the
peak position (despite a small shift to the left).

Although the strength varies smoothly with respect to
cluster size, the cluster lifetime does not. As shown in Fig. 6,
for a given load defined by 2bo../f,C;,=0.6, the average
cluster lifetime as a function of cluster size shows dramatic
variation. There is a window in cluster size within which the
lifetime is very large whereas, outside this window, the life-
time tends toward relatively very small values. We anticipate
this has deeper implications for understanding adhesion of
living cells, where a relatively uniform cluster size, usually
around 1 wm in diameter [6,7], is observed among focal ad-
hesions. It seems that this size may be directly related to the
optimum cluster size as identified here, implying that the
lifetime of a focal adhesion will be decreased dramatically if
its size becomes larger or smaller than the critical size. In
other words, it appears that a cluster is stable only within a
relatively narrow size range. Indeed, as illustrated in Fig. 5,
the maximum strength is achieved for a situation with about
15-25 bonds included in the cluster. Thus, the optimum clus-
ter size is roughly 600—1000 nm if one chooses the bond
spacing to be 40 nm (a typical value). This estimate is com-
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FIG. 5. (Color online) Comparison between model predictions
and simulation results.
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FIG. 6. (Color online) Average cluster lifetime as a function of
its size.

parable to the size of focal adhesions observed in experi-
ments [6,7]. We must point out that only the two-dimensional
problem is considered here, so the conclusion that about 15
bonds per patch is optimum does not necessarily mean that
there are 15 integrin molecules inside each cluster in real cell
adhesions; a more realistic three-dimensional model is
needed in the future to answer this question. However, we do
believe that the simple model presented here does capture the
essential features of the problem and the conclusion of the
existence of an optimum size for adhesion patches should be
pretty robust. Furthermore, the crude estimate of the number
of binders in a cohesion patch being 15X 15=225 does seem
to fall within the range of observations.

In the foregoing analysis, the deformation of the bond
itself has been neglected. This presumes that a bond is much
stiffer than the elastic material supporting it. To examine the
influence of bond compliance, we proceed by first recalling
that, from contact mechanics, the dimensionless parameter
a=2C/maE represents the ratio between the deformation of
elastic continuum and the bond itself. Here, C is the spring
constant of the intact bond pair, E is the modulus of the
extended elastic material, and a is the width of the bond. If
the Poisson ratio of the elastic material is chosen as v=0.3, a
typical value, the model predictions corresponding to differ-
ent values of « are shown in Fig. 7. It appears that, as long as
a>35, the results are almost indistinguishable from those ob-
tained by neglecting the bond deformations, that is, a=0%.
Direct Monte Carlo simulations have also verified this con-
clusion, but the results are not included here.

In attempting a connection to adhesion of living cells, the
spring constants C for several types of bonds have been mea-
sured to be within 1-4 pN/nm [27]. The modulus of a cell
as a whole is measured to be around 1-5 kPa [19], and local
measurements of the bulk modulus of a cell in the vicinity of
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FIG. 7. (Color online) Influence of bond compliance on the
interface strength.

an adhesion region suggested a value of E in the range
20-40 kPa [28]. Choosing parameter values a=12 nm [29],
C=2 pN/nm, and E=2-20 kPa, the value of « is found to
be between 5 and 50. This shows that the analysis provided
here may indeed have relevance to adhesion of living cells. It
is interesting to point out that, if the elastic continuum is
much stiffer than the bond, then a quite different scenario
arises. In that case, the situation reduces to that studied by
Erdmann and Schwarz [17] and Seifert [16], in which paral-
lel bonds connecting two rigid surfaces are subjected to load-
ing.

V. CONCLUDING REMARKS

In conclusion, the stochastic model presented here reveals
the existence of an optimum adhesion cluster size for which
adhesion strength is maximum. Corresponding to this
strength is a maximum lifetime for the cluster. This model
seems capable of explaining, from a mechanics point of
view, the uniform size among mature focal adhesion regions
observed in experiments. Of course, focal adhesions are re-
quired to perform numerous biological functions, so it is
quite possible that strength may not be the only factor in
determining the focal adhesion size. These questions need to
be addressed through careful experiments and corresponding
models in the future.
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